The convergence rate for a semilinear parabolic equation with a critical exponent
نویسندگان
چکیده
منابع مشابه
Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity
We study the behavior of solutions of the Cauchy problem for a semilinear parabolic equation with supercritical nonlinearity. It is known that if two solutions are initially close enough near the spatial infinity, then these solutions approach each other. In this paper, we give its sharp convergence rate for a class of initial data. We also derive a universal lower bound of the convergence rate...
متن کاملCritical Exponents for a Semilinear Parabolic Equation with Variable Reaction
In this paper we study the blow-up phenomenon for nonnegative solutions to the following parabolic problem: ut(x, t) = ∆u(x, t) + (u(x, t)) , in Ω× (0, T ), where 0 < p− = min p ≤ p(x) ≤ max p = p+ is a smooth bounded function. After discussing existence and uniqueness we characterize the critical exponents for this problem. We prove that there are solutions with blow-up in finite time if and o...
متن کاملRate of convergence to Barenblatt profiles for the fast diffusion equation with a critical exponent
We study the asymptotic behaviour of positive solutions of the Cauchy problem for the fast diffusion equation as t approaches the extinction time. We find a continuum of rates of convergence to a self-similar profile. These rates depend explicitly on the spatial decay rates of initial data.
متن کاملSolving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation
The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...
متن کاملThe Blow–up Rate for a Semilinear Parabolic Equation with a Nonlinear Boundary Condition
In this paper we obtain the blow-up rate for positive solutions of ut = uxx−λu, in (0, 1)×(0, T ) with boundary conditions ux(1, t) = uq(1, t), ux(0, t) = 0. If p < 2q − 1 or p = 2q − 1, 0 < λ < q, we find that the behaviour of u is given by u(1, t) ∼ (T − t) − 1 2(q−1) and, if λ < 0 and p ≥ 2q − 1, the blow up rate is given by u(1, t) ∼ (T − t) − 1 p−1 . We also characterize the blow-up profil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2011
ISSN: 0893-9659
DOI: 10.1016/j.aml.2010.10.041